extended integer's type
Source: /avail/Avail/Foundation/Math
Categories: Mathematics, Integers, Types
Compute and answer the negation of the specified integral type.
|
Position |
Name |
Type |
Description |
Parameters |
1 |
a |
extended integer's type |
|
Returns |
extended integer's type |
The negation of the argument, e.g., the negation of [3..5] is [-5..-3] .
|
number
Source: /avail/Avail/Foundation/Math
Categories: Mathematics, Numbers
Negate the argument. Avail's system dialect has no negative numeric literals, but the associated semantic restriction effectively overcomes this limitation (for literal arguments).
|
Position |
Name |
Type |
Description |
Parameters |
1 |
a |
number |
A number.
|
Returns |
number |
The negation of the argument.
|
extended integer's type's type
Source: /avail/Avail/Foundation/Math
Strangely, strengthen type-wise negation's own static type. This allows us to use type-wise negation of an integral type like natural number and get back something that is statically of (-∞..-1]'s type.
|
Type |
Description |
Parameter Types |
extended integer's type's type |
|
extended integer's type
Source: /avail/Avail/Foundation/Math
Strengthen negation.
|
Type |
Description |
Parameter Types |
extended integer's type |
|
number's type
Source: /avail/Avail/Foundation/Math
Compute and answer the strongest possible type of the argument. In particular, an instance type will result in a precise answer that has the same force as a literal.
|
Type |
Description |
Parameter Types |
number's type |
|